Advanced Intelligent Systems (Jan 2022)
Nanodancing with Moisture: Humidity‐Sensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide
Abstract
Bilayer actuators, traditionally consisting of two laminated materials, are the most common types of soft or hybrid actuators. Herein, a nanomaterial‐based organic–inorganic humidity‐sensitive bilayer actuator composed of TEMPO‐oxidized cellulose nanofibrils (TCNF‐Na+) and reduced graphene oxide (rGO) sheets is presented. The hybrid actuator displays a large humidity‐driven locomotion with an atypical fast unbending. Cationic exchange of the anionically charged TCNF‐Na+ and control of the layer thickness is used to tune and dictate the locomotion and actuator's response to humidity variations. Assembly of a self‐oscillating electrical circuit, that includes a conductive rGO layer, displays autonomous on‐and‐off lighting in response to actuation‐driven alternating electrical heating.
Keywords