Polymers (Jun 2022)

Natural Fiber-Reinforced Thermoplastic ENR/PVC Composites as Potential Membrane Technology in Industrial Wastewater Treatment: A Review

  • A.S. Norfarhana,
  • R.A. Ilyas,
  • N. Ngadi,
  • Shubham Sharma,
  • Mohamed Mahmoud Sayed,
  • A.S. El-Shafay,
  • A.H. Nordin

DOI
https://doi.org/10.3390/polym14122432
Journal volume & issue
Vol. 14, no. 12
p. 2432

Abstract

Read online

Membrane separation processes are prevalent in industrial wastewater treatment because they are more effective than conventional methods at addressing global water issues. Consequently, the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability, porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater treatment. Rubber-based membranes have shown the potential for high mechanical properties in water separation processes to date. In addition, the excellent sustainable practice of natural fibers has attracted great attention from industrial players and researchers for the exploitation of polymer composite membranes to improve the balance between the environment and social and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as filler and pore former agent enhances the mechanical properties, and high separation efficiency characteristics of membrane composites are discussed. Furthermore, recent advancements in the fabrication technique of porous membranes affected the membrane’s structure, and the performance of wastewater treatment applications is reviewed.

Keywords