Researches in Mathematics (Jul 2022)

Strengthening the Comparison Theorem and Kolmogorov Inequality in the Asymmetric Case

  • V.A. Kofanov,
  • K.D. Sydorovych

DOI
https://doi.org/10.15421/242204
Journal volume & issue
Vol. 30, no. 1
pp. 30 – 38

Abstract

Read online

We obtain the strengthened Kolmogorov comparison theorem in asymmetric case. In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case: $$ \|x^{(k)}_{\pm }\|_{\infty}\le \frac {\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }} {E_0(\varphi _r( \cdot \;;\alpha ,\beta ))^{1-k/r}_{\infty }} |||x|||^{1-k/r}_{\infty} \|\alpha^{-1}x_+^{(r)}+\beta^{-1}x_-^{(r)}\|_\infty^{k/r} $$ for functions $x \in L^r_{\infty }(\mathbb{R})$, where $$ |||x|||_\infty:=\frac12 \sup_{\alpha ,\beta}\{ |x(\beta)-x(\alpha)|:x'(t)\neq 0 \;\;\forall t\in (\alpha ,\beta) \} $$ $k,r \in \mathbb{N}$, $k 0$, $\varphi_r( \cdot \;;\alpha ,\beta )_r$ is the asymmetric perfect spline of Euler of order $r$ and $E_0(x)_\infty $ is the best uniform approximation of the function $x$ by constants.

Keywords