Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Anisa Gumerova
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Funda Korkmaz
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
Sari Miyashita
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Hasni Kannangara
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Liam Cullen
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Ashley Padilla
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Farhath Sultana
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Soleil A Wizman
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States
Natan Kramskiy
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States
Samir Zaidi
Memorial Sloan Kettering Cancer Center, New York, United States
Se-Min Kim
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Maria I New
Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States
Clifford J Rosen
Maine Medical Center Research Institute, Scarborough, United States
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
Tal Frolinger
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Vahram Haroutunian
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
Keqiang Ye
Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced technology, Chinese Academy of Sciences, Shenzhen, China
Daria Lizneva
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Terry F Davies
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Tony Yuen
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region—with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain—both are Alzheimer’s disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.