Energies (Apr 2020)

Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes

  • Xing Tian,
  • Jian Yang,
  • Zhigang Guo,
  • Qiuwang Wang,
  • Bengt Sunden

DOI
https://doi.org/10.3390/en13081961
Journal volume & issue
Vol. 13, no. 8
p. 1961

Abstract

Read online

In the present paper, the heat transfer of gravity-driven dense particle flow around five different shapes of tubes is numerically studied using discrete element method (DEM). The velocity vector, particle contact number, particle contact time and heat transfer coefficient of particle flow at different particle zones around the tube are carefully analyzed. The results show that the effect of tube shape on the particle flow at both upstream and downstream regions of different tubes are remarkable. A particle stagnation zone and particle cavity zone are formed at the upstream and downstream regions of all the tubes. Both the stagnation and cavity zones for the circular tube are the largest, and they are the smallest for the elliptical tube. As the particle outlet velocity (vout) changes from 0.5 mm/s to 8 mm/s at dp = 1.72 mm/s, when compared with the circular tube, the heat transfer coefficient of particle flow for the elliptical tube and flat elliptical tube can increase by 20.3% and 15.0% on average, respectively. The proper design of the downstream shape of the tube can improve the overall heat transfer performance more efficiently. The heat transfer coefficient will increase as particle diameter decreases.

Keywords