Lithosphere (Dec 2022)
Evaluation of Natural Gas Hydrate Fault System: A Case from a Sag in Deep-Water Slope Area of the Northern South China Sea
Abstract
AbstractThe fault system is one of the structural carrier systems of gas hydrate accumulation, which plays a vital role in controlling the distribution of natural gas hydrate (NGH) accumulation. The previous studies mainly focus on summarizing the vertical migration mode of high flux fluid along the fault with obvious geophysical response characteristics on the seismic profile, such as “fault with gas chimney,” “fault with mud diapir,” and “fault with submarine collapse”, but lack of evaluation methods for the fault carrier system. We use the X sag in the deep-water continental margin slope area of the northern South China Sea as an example to study the fault systems closely related to NGH. This paper puts to use attribute technologies, such as coherence, curvature, and fusion, to analyze the characteristics and combination of the fault systems. We discussed migration patterns and evaluation methods of dominant fault carrier systems. This research proves that the strike-slip fault system in the platform area can directly connect the gas source bed with high-quality hydrocarbon generation to the gas hydrate stability zone (GHSZ). The activity of this fault system is more conducive to the accumulation of hydrocarbon in the GHSZ. This area has a good site for pore-filling gas hydrate prospecting and a preferential favorable fault carrier system. The composite fault system, consisting of a normal dip-slip fault system and a polygonal fault system, in the slope area can jointly communicate the biogenic gas-rich reservoir. Its activity and well-migration performance are the main reasons for the submarine gas leakage and collapse. It is a secondary favorable fault carrier system in the study area. There may be massive and vein natural gas hydrate formation in fractures in the leakage passage, and pore-filled gas hydrate may exist in the submarine nonleakage area. In this work, a three-factor evaluation method of the fault carrier system is proposed for the first time. This method is of great significance for the evaluation and exploration of NGH reservoirs in the continental margin slope area of the northern South China Sea.