Nanomaterials (May 2023)

Characterization of Mode I and Mode II Interlaminar Fracture Toughness in CNT-Enhanced CFRP under Various Temperature and Loading Rates

  • Burak Yenigun,
  • Muhammad Salman Chaudhry,
  • Elli Gkouti,
  • Aleksander Czekanski

DOI
https://doi.org/10.3390/nano13111729
Journal volume & issue
Vol. 13, no. 11
p. 1729

Abstract

Read online

This study investigates the influence of temperature and loading rate on the Mode I and Mode II interlaminar fracture behavior of carbon-nanotubes-enhanced carbon-fiber-reinforced polymer (CNT-CFRP). CNT-induced toughening of the epoxy matrix is characterized by producing CFRP with varying loading of CNT areal density. CNT-CFRP samples were subjected to varying loading rates and testing temperatures. Fracture surfaces of CNT-CFRP were analyzed using scanning electron microscopy (SEM) imaging. Mode I and Mode II interlaminar fracture toughness increased with increasing amount of CNT to an optimum value of 1 g/m2, then decreased at higher CNT amounts. Moreover, it was found that CNT-CFRP fracture toughness increased linearly with the loading rate in Mode I and Mode II. On the other hand, different responses to changing temperature were observed; Mode I fracture toughness increased when elevating the temperature, while Mode II fracture toughness increased with increasing up to room temperature and decreased at higher temperatures.

Keywords