Demonstratio Mathematica (Apr 2017)
On the geometric nature of the twin paradox in curved spacetimes
Abstract
The famous „twin paradox” of special relativity is of purely geometric nature and formulated in curved spacetimes of general relativity motivates investigations of the timelike geodesic structure of these manifolds. Except for the maximally symmetric spacetimes the search for the longest timelike curves is hard, complicated and requires both advanced methods of global Lorentzian geometry and solving the intricate geodesic deviation equation. This article is a theoretical introduction to the problem. First we describe the procedure of determining the locally longest curves; it is algorithmic in the sense of consisting of a small number of definite steps and is effective if the geodesic deviation equation may be solved. Then we discuss the problem of globally maximal timelike curves; due to its nonlocal nature there is no prescription of how to solve it in finite number of steps. In the case of sufficiently high symmetry of the manifold also the globally longest curves may be found. Finally we briefly present some results recently found.
Keywords