Frontiers in Physics (Sep 2021)
Characterization of Diamond and Silicon Carbide Detectors With Fission Fragments
- M. L. Gallin-Martel,
- Y. H. Kim,
- L. Abbassi,
- A. Bes,
- C. Boiano,
- S. Brambilla,
- J. Collot,
- G. Colombi,
- G. Colombi,
- T. Crozes,
- S. Curtoni,
- D. Dauvergne,
- C. Destouches,
- F. Donatini,
- L. Gallin-Martel,
- O. Ghouini,
- J. Y. Hostachy,
- Ł. W. Iskra,
- Ł. W. Iskra,
- M. Jastrzab,
- G. Kessedjian,
- U. Köster,
- A. Lacoste,
- A. Lyoussi,
- S. Marcatili,
- J. F. Motte,
- J. F. Muraz,
- T. Nowak,
- L. Ottaviani,
- J. Pernot,
- A. Portier,
- A. Portier,
- W. Rahajandraibe,
- M. Ramdhane,
- M. Rydygier,
- C. Sage,
- A. Tchoualack,
- L. Tribouilloy,
- M. Yamouni
Affiliations
- M. L. Gallin-Martel
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- Y. H. Kim
- Institut Laue Langevin, Grenoble, France
- L. Abbassi
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- A. Bes
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- C. Boiano
- INFN Sezione di Milano via Celoria 16, Milano, Italy
- S. Brambilla
- INFN Sezione di Milano via Celoria 16, Milano, Italy
- J. Collot
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- G. Colombi
- Institut Laue Langevin, Grenoble, France
- G. Colombi
- INFN Sezione di Milano via Celoria 16, Milano, Italy
- T. Crozes
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- S. Curtoni
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- D. Dauvergne
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- C. Destouches
- CEA/DES/IRESNE/DER, Section of Experimental Physics, Safety Tests and Instrumentation, Cadarache, Saint Paul-les-Durance, France
- F. Donatini
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- L. Gallin-Martel
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- O. Ghouini
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- J. Y. Hostachy
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- Ł. W. Iskra
- INFN Sezione di Milano via Celoria 16, Milano, Italy
- Ł. W. Iskra
- Institute of Nuclear Physics, Polish Academy of Sciences, IFJ-PAN, Kraków, Poland
- M. Jastrzab
- Institute of Nuclear Physics, Polish Academy of Sciences, IFJ-PAN, Kraków, Poland
- G. Kessedjian
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- U. Köster
- Institut Laue Langevin, Grenoble, France
- A. Lacoste
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- A. Lyoussi
- CEA/DES/IRESNE/DER, Section of Experimental Physics, Safety Tests and Instrumentation, Cadarache, Saint Paul-les-Durance, France
- S. Marcatili
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- J. F. Motte
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- J. F. Muraz
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- T. Nowak
- Institute of Nuclear Physics, Polish Academy of Sciences, IFJ-PAN, Kraków, Poland
- L. Ottaviani
- IM2NP, UMR CNRS 7334, Université Aix-Marseille, Marseille, France
- J. Pernot
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- A. Portier
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- A. Portier
- Université Grenoble-Alpes, CNRS, Institut Néel, UPR2940, Grenoble, France
- W. Rahajandraibe
- IM2NP, UMR CNRS 7334, Université Aix-Marseille, Marseille, France
- M. Ramdhane
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- M. Rydygier
- Institute of Nuclear Physics, Polish Academy of Sciences, IFJ-PAN, Kraków, Poland
- C. Sage
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- A. Tchoualack
- IM2NP, UMR CNRS 7334, Université Aix-Marseille, Marseille, France
- L. Tribouilloy
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- M. Yamouni
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, Grenoble, France
- DOI
- https://doi.org/10.3389/fphy.2021.732730
- Journal volume & issue
-
Vol. 9
Abstract
Experimental fission studies for reaction physics or nuclear spectroscopy can profit from fast, efficient, and radiation-resistant fission fragment (FF) detectors. When such experiments are performed in-beam in intense thermal neutron beams, additional constraints arise in terms of target-detector interface, beam-induced background, etc. Therefore, wide gap semi-conductor detectors were tested with the aim of developing innovative instrumentation for such applications. The detector characterization was performed with mass- and energy-separated fission fragment beams at the ILL (Institut Laue Langevin) LOHENGRIN spectrometer. Two single crystal diamonds, three polycrystalline and one diamond-on-iridium as well as a silicon carbide detector were characterized as solid state ionization chamber for FF detection. Timing measurements were performed with a 500-µm thick single crystal diamond detector read out by a broadband amplifier. A timing resolution of ∼10.2 ps RMS was obtained for FF with mass A = 98 at 90 MeV kinetic energy. Using a spectroscopic preamplifier developed at INFN-Milano, the energy resolution measured for the same FF was found to be slightly better for a ∼50-µm thin single crystal diamond detector (∼1.4% RMS) than for the 500-µm thick one (∼1.6% RMS), while a value of 3.4% RMS was obtained with the 400-µm silicon carbide detector. The Pulse Height Defect (PHD), which is significant in silicon detectors, was also investigated with the two single crystal diamond detectors. The comparison with results from α and triton measurements enabled us to conclude that PHD leads to ∼50% loss of the initial generated charge carriers for FF. In view of these results, a possible detector configuration and integration for in-beam experiments has been discussed.
Keywords
- solid-state detectors
- diamond detectors
- silicon carbide detectors
- heavy-ion detectors
- radiation-hard detectors
- fission fragment