Frontiers in Cellular and Infection Microbiology (Mar 2023)

Hepatitis C virus fitness can influence the extent of infection-mediated epigenetic modifications in the host cells

  • Carlos García-Crespo,
  • Carlos García-Crespo,
  • Irene Francisco-Recuero,
  • Isabel Gallego,
  • Isabel Gallego,
  • Marina Camblor-Murube,
  • María Eugenia Soria,
  • María Eugenia Soria,
  • María Eugenia Soria,
  • Ana López-López,
  • Ana Isabel de Ávila,
  • Ana Isabel de Ávila,
  • Antonio Madejón,
  • Antonio Madejón,
  • Javier García-Samaniego,
  • Javier García-Samaniego,
  • Esteban Domingo,
  • Esteban Domingo,
  • Aurora Sánchez-Pacheco,
  • Celia Perales,
  • Celia Perales,
  • Celia Perales

DOI
https://doi.org/10.3389/fcimb.2023.1057082
Journal volume & issue
Vol. 13

Abstract

Read online

IntroductionCellular epigenetic modifications occur in the course of viral infections. We previously documented that hepatitis C virus (HCV) infection of human hepatoma Huh-7.5 cells results in a core protein-mediated decrease of Aurora kinase B (AURKB) activity and phosphorylation of Serine 10 in histone H3 (H3Ser10ph) levels, with an affectation of inflammatory pathways. The possible role of HCV fitness in infection-derived cellular epigenetic modifications is not known.MethodsHere we approach this question using HCV populations that display a 2.3-fold increase in general fitness (infectious progeny production), and up to 45-fold increase of the exponential phase of intracellular viral growth rate, relative to the parental HCV population.ResultsWe show that infection resulted in a HCV fitness-dependent, average decrease of the levels of H3Ser10ph, AURKB, and histone H4 tri-methylated at Lysine 20 (H4K20m3) in the infected cell population. Remarkably, the decrease of H4K20m3, which is a hallmark of cellular transformation, was significant upon infection with high fitness HCV but not upon infection with basal fitness virus.DiscussionHere we propose two mechanisms ─which are not mutually exclusive─ to explain the effect of high viral fitness: an early advance in the number of infected cells, or larger number of replicating RNA molecules per cell. The implications of introducing HCV fitness as an influence in virus-host interactions, and for the course of liver disease, are warranted. Emphasis is made in the possibility that HCV-mediated hepatocellular carcinoma may be favoured by prolonged HCV infection of a human liver, a situation in which viral fitness is likely to increase.

Keywords