Energies (Nov 2018)

Numerical Investigation on the Influence of Areal Flow on EGS Thermal Exploitation Based on the 3-D T-H Single Fracture Model

  • Chi Yao,
  • Yulong Shao,
  • Jianhua Yang

DOI
https://doi.org/10.3390/en11113026
Journal volume & issue
Vol. 11, no. 11
p. 3026

Abstract

Read online

The research on the factors of heat recovery performance of Enhanced Geothermal Systems (EGS) is an important issue, especially in the well position optimization in EGS, because it can maximize the economic benefits of EGS. Based on the three-dimensional thermo and hydro (TH) single-fracture model, a flow field in the EGS is added to the model, the thermal energy mining of the EGS thermal reservoir is realized through the double well and better study of the impact of regional flow on EGS well placement. To verify the reliability of the three-dimensional numerical model, the comparison between the two-dimensional single fracture model and the single fracture analytical model is performed under the same conditions, and it is found that there is a good agreement between the numerical and the analytical solutions. The influence of the direction of regional flow on the thermal recovery performance of EGS is studied, and the operating lifetime, power generation and heat production rate of the system are used as the evaluation indicators. It is found that there are two stagnation points in the flow field under regional flow conditions, and the stagnation point position changes regularly with regional flow direction. The direction of regional flow has a great influence on the heat extraction ratio and service lifetime of the geothermal system, the layout of the double well must take into account the regional flow. When only considered the influence of regional flow on EGS, after 50 years of EGS operation, the production well temperature and system operating lifetime increase with the increase of β (the angle between the direction of the regional flow and the line connecting the centers of the two wells). When it has regional flow, the greater the well spacing, the greater the temperature of the production well, but when the well spacing increases to a certain value, the well spacing will not affect the temperature of the production well.

Keywords