Scientific Reports (Sep 2023)

Condition optimization of eco-friendly RP-HPLC and MCR methods via Box–Behnken design and six sigma approach for detecting antibiotic residues

  • Tahani Y. A. Alanazi,
  • Rami Adel Pashameah,
  • Ammena Y. Binsaleh,
  • Mahmoud A. Mohamed,
  • Hoda A. Ahmed,
  • Hossam F. Nassar

DOI
https://doi.org/10.1038/s41598-023-40010-1
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 28

Abstract

Read online

Abstract A precise, Eco-friendly, and highly sensitive RP-HPLC method was employed using quality-by-design principles to concurrently identify cephalexin and cefixime residues in the manufacturing machines using a hypersil BDS C18 column (250 × 4.6 mm, 5 μm) at wavelength 254 nm. The Box–Behnken design was applied to obtain the best chromatographic conditions with the fewest possible trials. Three independent factors viz organic composition, flow rate, and pH were used to assess their effects on the responses' resolution and retention time. Overlay plot and desirability functions were implemented to predict responses of the high resolution and relatively short retention time using a mobile phase composed of acidic water: acetonitrile (85:15, v/v) at pH 4.5 adjusted by phosphoric acid with a flow rate of 2.0 mL/min. The spectral overlapping of the drugs was successfully resolved by the mean centering ratio (MCR) spectra approach at 261 nm and 298 nm for cephalexin and cefixime, respectively. Good linearity results were obtained for the suggested HPLC and MCR methods over the concentration range of (0.05–10 ppm) and (5–30 ppm) with a detection limit of 0.003, 0.004, 0.26, and 0.23 ppm, and quantitation limits of 0.008, 0.013, 0.79, and 0.68 ppm for cephalexin and cefixime, respectively, with a correlation coefficient of ≥ 0.9998 and good swab recovery results of 99–99.5%. A process capability index was accomplished for chemical and micro results, illustrating that both are extremely capable. The suggested method was effectively validated using ICH recommendations.