Single cell analysis reveals inhibition of angiogenesis attenuates the progression of heterotopic ossification in Mkx −/− mice
Junxin Lin,
Yuwei Yang,
Wenyan Zhou,
Chao Dai,
Xiao Chen,
Yuanhao Xie,
Shan Han,
Huanhuan Liu,
Yejun Hu,
Chenqi Tang,
Varitsara Bunpetch,
Dandan Zhang,
Yishan Chen,
Xiaohui Zou,
Di Chen,
Wanlu Liu,
Hongwei Ouyang
Affiliations
Junxin Lin
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Yuwei Yang
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Wenyan Zhou
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Chao Dai
Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province
Xiao Chen
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Yuanhao Xie
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Shan Han
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Huanhuan Liu
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Yejun Hu
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Chenqi Tang
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Varitsara Bunpetch
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Dandan Zhang
Department of Pathology, Zhejiang University School of Medicine
Yishan Chen
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Xiaohui Zou
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Di Chen
Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province
Wanlu Liu
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Hongwei Ouyang
Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine
Abstract Tendon heterotopic ossification (HO) is characterized by bone formation inside tendon tissue, which severely debilitates people in their daily life. Current therapies fail to promote functional tissue repair largely due to our limited understanding of HO pathogenesis. Here, we investigate the pathological mechanism and propose a potential treatment method for HO. Immunofluorescence assays showed that the Mohawk (MKX) expression level was decreased in human tendon HO tissue, coinciding with spontaneous HO and the upregulated expression of osteochondrogenic and angiogenic genes in the tendons of Mkx −/− mice. Single-cell RNA sequencing analyses of wild-type and Mkx −/− tendons identified three cell types and revealed the excessive activation of osteochondrogenic genes during the tenogenesis of Mkx −/− tendon cells. Single-cell analysis revealed that the gene expression program of angiogenesis, which is strongly associated with bone formation, was activated in all cell types during HO. Moreover, inhibition of angiogenesis by the small-molecule inhibitor BIBF1120 attenuated bone formation and angiogenesis in the Achilles tendons of both Mkx mutant mice and a rat traumatic model of HO. These findings provide new insights into the cellular mechanisms of tendon HO and highlight the inhibition of angiogenesis with BIBF1120 as a potential treatment strategy for HO.