Department of Physics, University of Buenos Aires, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
Sol Fittipaldi
National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
Cecilia Gonzalez Campo
National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
Sebastián Moguilner
Global Brain Health Institute, University of California, San Francisco, San Francisco, United States; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
Josephine Cruzat
Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
Matias E Fraile-Vazquez
Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
Rubén Herzog
Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
Morten L Kringelbach
Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Århus, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Clayton, Australia
Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California, San Francisco, San Francisco, United States; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
Enzo Tagliazucchi
Department of Physics, University of Buenos Aires, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.