Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Ye Zhao
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Zi’ang Chen
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Siying Wang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Yanfang Ren
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Qian Wang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Jinjun Shao
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
Wenjun Wang
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Xiaochen Dong
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
To meet critical requirements on flexible electronic devices, multifunctionalized flexible sensors with excellent electromechanical performance and temperature perception are required. Herein, lignin-reinforced thermoresponsive poly(ionic liquid) hydrogel is prepared through an ultrasound-assisted synthesized method. Benefitting from the electrostatic interaction between lignin and ionic liquid, the hydrogel displays high stretchability (over 1425%), excellent toughness (over 132 kPa), and impressive stress loading-unloading cyclic stability. The hydrogel strain sensor presents excellent electromechanical performance with a high gauge factor (1.37) and rapid response rate (198 ms), which lays the foundation for human body movement detection and smart input. Moreover, owing to the thermal-sensitive feature of poly(ionic liquid), the as-prepared hydrogel displays remarkable thermal response sensitivity (0.217°C-1) in body temperature range and low limit of detection, which can be applied as a body shell temperature indicator. Particularly, the hydrogel can detect dual stimuli of strain and temperature and identify each signal individually, showing the specific application in human-machine interaction and artificial intelligence. By integrating the hydrogel strain sensor into a wireless sensation system, remote motion capture and gesture identification is realized in real-time.