Frontiers in Robotics and AI (Mar 2024)

Freedom comes at a cost?: An exploratory study on affordances’ impact on users’ perception of a social robot

  • Guanyu Huang,
  • Roger K. Moore

DOI
https://doi.org/10.3389/frobt.2024.1288818
Journal volume & issue
Vol. 11

Abstract

Read online

Along with the development of speech and language technologies, the market for speech-enabled human-robot interactions (HRI) has grown in recent years. However, it is found that people feel their conversational interactions with such robots are far from satisfactory. One of the reasons is the habitability gap, where the usability of a speech-enabled agent drops when its flexibility increases. For social robots, such flexibility is reflected in the diverse choice of robots’ appearances, sounds and behaviours, which shape a robot’s ‘affordance’. Whilst designers or users have enjoyed the freedom of constructing a social robot by integrating off-the-shelf technologies, such freedom comes at a potential cost: the users’ perceptions and satisfaction. Designing appropriate affordances is essential for the quality of HRI. It is hypothesised that a social robot with aligned affordances could create an appropriate perception of the robot and increase users’ satisfaction when speaking with it. Given that previous studies of affordance alignment mainly focus on one interface’s characteristics and face-voice match, we aim to deepen our understanding of affordance alignment with a robot’s behaviours and use cases. In particular, we investigate how a robot’s affordances affect users’ perceptions in different types of use cases. For this purpose, we conducted an exploratory experiment that included three different affordance settings (adult-like, child-like, and robot-like) and three use cases (informative, emotional, and hybrid). Participants were invited to talk to social robots in person. A mixed-methods approach was employed for quantitative and qualitative analysis of 156 interaction samples. The results show that static affordance (face and voice) has a statistically significant effect on the perceived warmth of the first impression; use cases affect people’s perceptions more on perceived competence and warmth before and after interactions. In addition, it shows the importance of aligning static affordance with behavioural affordance. General design principles of behavioural affordances are proposed. We anticipate that our empirical evidence will provide a clearer guideline for speech-enabled social robots’ affordance design. It will be a starting point for more sophisticated design guidelines. For example, personalised affordance design for individual or group users in different contexts.

Keywords