BMC Infectious Diseases (Jun 2017)

In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer

  • Mitra Gholami,
  • Rashin Mohammadi,
  • Mohsen Arzanlou,
  • Fakhraddin Akbari Dourbash,
  • Ebrahim Kouhsari,
  • Gharib Majidi,
  • Seyed Mohsen Mohseni,
  • Shahram Nazari

DOI
https://doi.org/10.1186/s12879-017-2513-7
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Nano-scale dendrimers are synthetic macromolecules that frequently used in medical and health field. Traditional anibiotics are induce bacterial resistence so there is an urgent need for novel antibacterial drug invention. In the present study seventh generation poly (amidoamine) (PAMAM-G7) dendrimer was synthesized and its antibacterial activities were evaluated against representative Gram- negative and Gram-positive bacteria. Methods PAMAM-G7 was synthesized with divergent growth method. The structural and surface of PAMAM-G7 were investigated by transmission electron microscopy, scanning electron microscope and fourier transform infrared. Pseudomonas. aeruginosa (n = 15), E. coli (n = 15), Acinetobacter baumanni (n = 15), Shigella dysenteriae (n = 15), Klebsiella pneumoniae (n = 10), Proteus mirabilis (n = 15), Staphylococcus aureus (n = 15) and Bacillus subtilis (n = 10) have been used for antibacterial activity assay. Additionally, representative standard strains for each bacterium were included. Minimum Inhibitory Concentration (MIC) was determined using microdilution method. Subsequently, Minimum Bactericidal Concentration (MBC) was determined by sub-culturing each of the no growth wells onto Mueller Hinton agar medium. The cytotoxicity of PAMAM-G7 dendrimer were evaluated in HCT116 and NIH 3 T3 cells by MTT assay. Results The average size of each particle was approximately 20 nm. PAMAM-G7 was potentially to inhibit both Gram positive and gram negative growth. The MIC50 and MIC90 values were determined to be 2–4 μg/ml and 4–8 μg/ml, respectively. The MBC50 and MBC90 values were found to be 64–256 μg/ml and 128–256 μg/ml, respectively. The cytotoxity effect of dendrimer on HCT116 and NIH 3 T3 cells is dependent upon exposure time to and concentration of dendrimers. The most reduction (44.63 and 43%) in cell viability for HCT116 and NIH 3 T3 cells was observed at the highest concentration, 0.85 μM after 72 h treatmentm, respectively. Conclusions This study we conclude that PAMAM-G7 dendrimer could be a potential candidate as a novel antibacterial agent.

Keywords