Foods (Sep 2024)
Characterizing the Contribution of Strain Specificity to the Microbiota Structure and Metabolites of <i>Muqu</i> and Fresh High-Temperature <i>Daqu</i>
Abstract
In this study, the differences in physicochemical properties, microbial community structure, and metabolic characteristics between various fortified Muqu and their corresponding high-temperature Daqu (HTD) were investigated using multiphase detection methods. The results demonstrated that the physicochemical properties, community structure, dominant bacterial composition, and metabolic components varied significantly among the different types of fortified HTD. The differences between HTDs became more pronounced when fortified HTD was used as Muqu. Compared to HTD, Muqu exhibited a more complex volatile profile, while HTD contained higher levels of characteristic non-volatile components. The cultivable bacteria count in Muqu was significantly higher than that in HTD, while the cultivable fungi count was slightly lower than that in HTD. The fungal profiles in HTD were primarily associated with starch hydrolysis and ethanol synthesis, while bacterial activity was more prominent in Muqu. Additionally, pyrazine synthesis was mainly attributed to fungi in Muqu and bacteria in HTD. Source Tracker analysis indicated that 8.11% of the bacteria and 26.76% of the fungi originated from Muqu. This study provides a theoretical foundation for the controlled production of HTD, contributing to improvements in its quality and consistency.
Keywords