Sensors (Jun 2023)
FPGA Implementation of Keyword Spotting System Using Depthwise Separable Binarized and Ternarized Neural Networks
Abstract
Keyword spotting (KWS) systems are used for human–machine communications in various applications. In many cases, KWS involves a combination of wake-up-word (WUW) recognition for device activation and voice command classification tasks. These tasks present a challenge for embedded systems due to the complexity of deep learning algorithms and the need for optimized networks for each application. In this paper, we propose a depthwise separable binarized/ternarized neural network (DS-BTNN) hardware accelerator capable of performing both WUW recognition and command classification on a single device. The design achieves significant area efficiency by redundantly utilizing bitwise operators in the computation of the binarized neural network (BNN) and ternary neural network (TNN). In a complementary metal-oxide semiconductor (CMOS) 40 nm process environment, the DS-BTNN accelerator demonstrated significant efficiency. Compared with a design approach where BNN and TNN were independently developed and subsequently integrated as two separate modules into the system, our method achieved a 49.3% area reduction while yielding an area of 0.558 mm2. The designed KWS system, which was implemented on a Xilinx UltraScale+ ZCU104 field-programmable gate array (FPGA) board, receives real-time data from the microphone, preprocesses them into a mel spectrogram, and uses this as input to the classifier. Depending on the order, the network operates as a BNN or a TNN for WUW recognition and command classification, respectively. Operating at 170 MHz, our system achieved 97.1% accuracy in BNN-based WUW recognition and 90.5% in TNN-based command classification.
Keywords