Frontiers in Zoology (Jun 2010)
Low levels of nestmate discrimination despite high genetic differentiation in the invasive pharaoh ant
Abstract
Abstract Background Ants typically distinguish nestmates from non-nestmates based on the perception of colony-specific chemicals, particularly cuticular hydrocarbons present on the surface of the ants' exoskeleton. These recognition cues are believed to play an important role in the formation of vast so-called supercolonies that have been described for some invasive ant species, but general conclusions about the role of these cues are hampered by only few species being studied. Here we use data on cuticular hydrocarbons, aggression and microsatellite genetic markers to investigate the interdependence of chemical recognition cues, genetic distance and nestmate discrimination in the pharaoh ant (Monomorium pharaonis), a widespread pest species, and ask whether introduced populations of this species are genetically differentiated and exhibit intraspecific aggression. Results Microsatellite analyses of a total of 35 colonies from four continents revealed extremely high levels of genetic differentiation between almost all colonies (FST = 0.751 ± 0.006 SE) and very low within-colony diversity. This implies that at least 34 and likely hundreds more independent lineages of this ant have spread worldwide. Aggression tests involving workers from 14 different colonies showed only low levels of aggression, even between colonies that were geographically and/or genetically very distant. Chemical analyses of groups of worker ants showed that all colonies had the same cuticular compounds, which varied only quantitatively among colonies. There was a positive correlation between geographical and genetic distance, but no other significant relationships were detected between aggression, chemical profile, genetic distance and geographical distance. Conclusions The pharaoh ant has a global invasion history of numerous independent introductions resulting in genetically highly differentiated colonies typically displaying surprisingly low levels of intraspecific aggression, a behaviour that may have evolved in the native range or by lineage selection in the introduced range.