Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis
Jinhui Li,
Ruibin Zhang,
Siqi Liu,
Qunjun Liang,
Senning Zheng,
Xianyou He,
Ruiwang Huang
Affiliations
Jinhui Li
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
Ruibin Zhang
Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
Siqi Liu
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
Qunjun Liang
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
Senning Zheng
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
Xianyou He
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
Ruiwang Huang
Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China; Corresponding author.
Humans use different spatial reference frames (allocentric or egocentric) to navigate successfully toward their destination in different spatial scale spaces (environmental or vista). However, it remains unclear how the brain represents different spatial scales and different spatial reference frames. Thus, we conducted an activation likelihood estimation (ALE) meta-analysis of 47 fMRI articles involving human spatial navigation. We found that both the environmental and vista spaces activated the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area in the right hemisphere. The environmental space showed stronger activation than the vista space in the occipital and frontal regions. No brain region exhibited stronger activation for the vista than the environmental space. The allocentric and egocentric reference frames activated the bilateral PPA and right RSC. The allocentric frame showed more stronger activations than the egocentric frame in the right culmen, left middle frontal gyrus, and precuneus. No brain region displayed stronger activation for the egocentric than the allocentric navigation. Our findings suggest that navigation in different spatial scale spaces can evoke specific and common brain regions, and that the brain regions representing spatial reference frames are not absolutely separated.