Ecology and Evolution (Nov 2019)

Population genetic structure and intraspecific genetic distance of Periplaneta americana (Blattodea: Blattidae) based on mitochondrial and nuclear DNA markers

  • Jinnan Ma,
  • Jinhua Liu,
  • Yongmei Shen,
  • Zhenxin Fan,
  • Bisong Yue,
  • Xiuyue Zhang

DOI
https://doi.org/10.1002/ece3.5777
Journal volume & issue
Vol. 9, no. 22
pp. 12928 – 12939

Abstract

Read online

Abstract The American cockroach (Periplaneta americana) is a globally invasive pest that can cause significant economic loss and threaten human health. Although it is abundant and lives in close proximity to humans, few studies have investigated the genetic diversity of P. americana. Our study analyzed 1,053 P. americana and other Periplaneta species' samples from different locations in China and the United States. A traditional tree‐based method using 17 unique mitochondrial COI haplotypes of P. americana and 20 haplotypes of the other Periplaneta species accurately identified P. americana with a barcoding threshold of 5.1%. To identify the population genetic structure of P. americana, we investigated wingless gene and pooled them with obtained mtDNA data for a combined analysis. Although the genetic diversity of the USA group was relatively higher than the China group, the number of haplotypes and alleles of both groups was small. The analysis of molecular variance (AMOVA), intraspecific phylogeny, and haplotype networks indicated that P. americana had very little global genetic differentiation. The weak geographic genetic structure might reflect the human‐mediated dispersal of P. americana. Despite no apparent phylogeographic assignment of mtDNA and nuclear lineages was observed in both BI trees, the integrated COI sequence data identified four distinct P. americana haplotype groups, showing four ancient maternal lineages of P. americana in China and the United States.

Keywords