Microbiology Spectrum (Aug 2024)

A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development

  • Chunli Sun,
  • Danyan Zhou,
  • Jintao He,
  • Haiyang Liu,
  • Ying Fu,
  • Zhihui Zhou,
  • Sebastian Leptihn,
  • Yunsong Yu,
  • Xiaoting Hua,
  • Qingye Xu

DOI
https://doi.org/10.1128/spectrum.00086-24
Journal volume & issue
Vol. 12, no. 8

Abstract

Read online

ABSTRACT Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection.IMPORTANCEAcinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.

Keywords