Applied Sciences (Dec 2021)

Convolutional Neural Networks for Breast Density Classification: Performance and Explanation Insights

  • Francesca Lizzi,
  • Camilla Scapicchio,
  • Francesco Laruina,
  • Alessandra Retico,
  • Maria Evelina Fantacci

DOI
https://doi.org/10.3390/app12010148
Journal volume & issue
Vol. 12, no. 1
p. 148

Abstract

Read online

We propose and evaluate a procedure for the explainability of a breast density deep learning based classifier. A total of 1662 mammography exams labeled according to the BI-RADS categories of breast density was used. We built a residual Convolutional Neural Network, trained it and studied the responses of the model to input changes, such as different distributions of class labels in training and test sets and suitable image pre-processing. The aim was to identify the steps of the analysis with a relevant impact on the classifier performance and on the model explainability. We used the grad-CAM algorithm for CNN to produce saliency maps and computed the Spearman’s rank correlation between input images and saliency maps as a measure of explanation accuracy. We found that pre-processing is critical not only for accuracy, precision and recall of a model but also to have a reasonable explanation of the model itself. Our CNN reaches good performances compared to the state-of-art and it considers the dense pattern to make the classification. Saliency maps strongly correlate with the dense pattern. This work is a starting point towards the implementation of a standard framework to evaluate both CNN performances and the explainability of their predictions in medical image classification problems.

Keywords