Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation
Ian Morilla,
Philippe Chan,
Fanny Caffin,
Ljubica Svilar,
Sonia Selbonne,
Ségolène Ladaigue,
Valérie Buard,
Georges Tarlet,
Béatrice Micheau,
Vincent Paget,
Agnès François,
Maâmar Souidi,
Jean-Charles Martin,
David Vaudry,
Mohamed-Amine Benadjaoud,
Fabien Milliat,
Olivier Guipaud
Affiliations
Ian Morilla
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France; Corresponding author
Philippe Chan
Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
Fanny Caffin
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Ljubica Svilar
Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France; CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
Sonia Selbonne
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Ségolène Ladaigue
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France; Sorbonne University, Doctoral College, 75005 Paris, France
Valérie Buard
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Georges Tarlet
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Béatrice Micheau
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Vincent Paget
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Agnès François
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Maâmar Souidi
IRSN, Radiobiology of Accidental Exposure Laboratory (LRAcc), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Jean-Charles Martin
Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France; CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
David Vaudry
Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
Mohamed-Amine Benadjaoud
IRSN, Radiobiology and Regenerative Medicine Research Service (SERAMED), 92260 Fontenay-Aux-Roses, France
Fabien Milliat
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
Olivier Guipaud
IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France; Corresponding author
Summary: The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers—i.e. miRNome, targeted transcriptome, proteome, and metabolome—in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.