Pharmaceutics (Jun 2022)

Synthesis and Evaluation of Small Molecule Drug Conjugates Harnessing Thioester-Linked Maytansinoids

  • Chen-Fu Lo,
  • Tai-Yu Chiu,
  • Yu-Tzu Liu,
  • Li-Rung Huang,
  • Teng-Kuang Yeh,
  • Kuan-Hsun Huang,
  • Kuan-Liang Liu,
  • Chia-Yu Hsu,
  • Ming-Yu Fang,
  • Yu-Chen Huang,
  • Tsu-An Hsu,
  • Chiung-Tong Chen,
  • Lun Kelvin Tsou

DOI
https://doi.org/10.3390/pharmaceutics14071316
Journal volume & issue
Vol. 14, no. 7
p. 1316

Abstract

Read online

Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a “hot inflamed tumor” state. With the identification and validation of a plethora of cancer-associated antigens in the “omics” era, this work provided the insight that antibody- or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.

Keywords