Metal Knitting: A New Strategy for Cold Gas Spray Additive Manufacturing
Rodolpho F. Vaz,
Vicente Albaladejo-Fuentes,
Javier Sanchez,
Unai Ocaña,
Ziortza G. Corral,
Horacio Canales,
Irene G. Cano
Affiliations
Rodolpho F. Vaz
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Vicente Albaladejo-Fuentes
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Javier Sanchez
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Unai Ocaña
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Ziortza G. Corral
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Horacio Canales
Cátedras CONACyT—Centro de Ingeniería y Desarrollo Industrial (CIDESI), Av. Playa Pie de la Cuesta No. 702, Desarrollo San Pablo, Santiago de Querétaro C.P. 76125, Mexico
Irene G. Cano
Thermal Spray Centre CPT, Universitat de Barcelona, Carrer Martí i Franques 1, 7a planta, 08028 Barcelona, Spain
Cold Spray Additive Manufacturing (CSAM) is an emergent technique to produce parts by the additive method, and, like other technologies, it has pros and cons. Some advantages are using oxygen-sensitive materials to make parts, such as Ti alloys, with fast production due to the high deposition rate, and lower harmful residual stress levels. However, the limitation in the range of the parts’ geometries is a huge CSAM con. This work presents a new conceptual strategy for CSAM spraying. The controlled manipulation of the robot arm combined with the proper spraying parameters aims to optimize the deposition efficiency and the adhesion of particles on the part sidewalls, resulting in geometries from thin straight walls, less than 5 mm thick, up to large bulks. This new strategy, Metal Knitting, is presented regarding its fundamentals and by comparing the parts’ geometries produced by Metal Knitting with the traditional strategy. The Metal Knitting described here made parts with vertical sidewalls, in contrast to the 40 degrees of inclination obtained by the traditional strategy. Their mechanical properties, microstructures, hardness, and porosity are also compared for Cu, Ti, Ti6Al4V, 316L stainless steel, and Al.