BMC Pulmonary Medicine (Aug 2024)
Predictors for acute exacerbation of interstitial pneumonia following lung cancer surgery: a multicenter study
Abstract
Abstract Background Acute exacerbation (AE) of interstitial lung disease (ILD) is one of the most serious complications during perioperative period of lung cancer resection. This study aimed to investigate the correlation between preoperative 2- deoxy-2-[18F]fluoro-D-glucose (18F-FDG) PET/CT findings and AE in lung cancer patients with ILD. Methods We retrospectively reviewed the data of 210 patients who underwent lung resection for non-small cell lung cancer. Relationships between clinical data and PET images and AE were evaluated. The patients were divided into an AE(+) and an AE(-) group for multivariate logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was conducted and the area under curve (AUC) was used to assess the predictive values. Results Among 210 patients, 48 (22.8%) were diagnosed with ILD based on chest CT. Among them, 9 patients (18.75%) developed AE after lung resection and were defined as AE(+) group. The course of ILD was longer in AE(+) group compared to AE(-) group. More patients in AE(+) group had a history of AE and chronic obstructive pulmonary disease (COPD) than in AE(-) group. The maximum standardized uptake value (SUVmax) of the noncancerous interstitial pneumonia (IP) area and cancers in AE(+) group was significantly higher compared to AE(-) group. Univariate logistic regression analysis showed that AE, COPD, SUVmax of the noncancerous IP area, SUVmax of cancer, surgical method were significantly correlated with AE. The course of ILD[OR(95%CI) 2.919; P = 0.032], SUVmax of the noncancerous IP area[OR(95%CI) 7.630;P = 0.012] and D-Dimer level[OR(95%CI) 38.39;P = 0.041] were identified as independent predictors for AE in patients with ILD after lung cancer surgery. When the three indicators were combined, we found significantly better predictive performance for postoperative AE than that of SUVmax of the noncancerous IP area alone [0.963 (95% CI 0.914-1.00); sensitivity, 100%, specificity 87.2%, P < 0.001 vs. 0.875 (95% CI 0.789 ~ 0.960); sensitivity, 88.9%, specificity, 76.9%, P = 0.001; difference in AUC = 0.088, Z = 1.987, P = 0.04]. Conclusion The combination of the course of ILD, SUVmax of the noncancerous IP area and D-Dimer levels has high predictive value for the occurrence of AE in patients with concomitant interstitial lesions.
Keywords