Research progress of MXenes-based wearable pressure sensors
Dandan Lei,
Nishuang Liu,
Tuoyi Su,
Luoxin Wang,
Jun Su,
Zhi Zhang,
Yihua Gao
Affiliations
Dandan Lei
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Nishuang Liu
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Tuoyi Su
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Luoxin Wang
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Jun Su
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Zhi Zhang
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Yihua Gao
Center for Nanoscale Characterization & Devices, Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
Flexible wearable pressure sensors can maintain their sensing capability when any deformation occurs, which possess ponderance in the realms of electronic skin, man–machine interaction, medical diagnosis, and human motion detection. Two-dimensional (2D) layered-structured materials of early transition metal carbides and carbonitrides, named MXenes, own fascinating character due to mechanical flexibility, good conductivity, excellent hydrophilic property, large specific surface areas, and unique surface chemistry. The excellent properties of MXenes can improve the sensing performance of flexible pressure sensors based on MXenes. MXenes can be obtained by diverse preparation methods and form composites with other materials conveniently. In particular, polymers are ideal choices for synthesizing MXenes composites due to their versatility, compatibility, and low cost. MXenes or MXenes/polymers display strengthened mechanical flexibility and tensile properties through the design of the structure and the manufacturing process, which makes them desirable for extensive use in the realm of wearable pressure sensors. In this review, we focus on preparation and compounding methods of MXenes and MXenes/polymers as well as recent progress of applications in wearable pressure sensors. Moreover, major challenges and further research are also presented.