PRX Quantum (Feb 2024)
Using Cryogenic CMOS Control Electronics to Enable a Two-Qubit Cross-Resonance Gate
Abstract
Qubit control electronics composed of CMOS circuits are of critical interest for next-generation quantum computing systems. A CMOS-based application-specific integrated circuit (ASIC) fabricated in 14-nm fin field-effect transistor (FinFET) technology was used to generate and sequence qubit control wave forms and demonstrate a two-qubit cross-resonance gate between fixed-frequency transmons. The controller was thermally anchored to the T=4 K stage of a dilution refrigerator and the measured power was 23 mW per qubit under active control. The chip generated single-side banded output frequencies between 4.5 and 5.5 GHz, with a maximum power output of −18 dBm. Randomized-benchmarking (RB) experiments revealed an average number of 1.71 instructions per Clifford (IPC) for single-qubit gates and 17.51 IPC for two-qubit gates. A single-qubit error per gate of ϵ_{1Q}=8×10^{−4} and a two-qubit error per gate of ϵ_{2Q}=1.4×10^{−2} were shown. A drive-induced Z rotation was observed by way of a rotary-echo experiment; this observation is consistent with the expected qubit behavior given the measured excess local-oscillator (LO) leakage from the CMOS chip. The effect of spurious drive-induced Z errors was numerically evaluated with a two-qubit model Hamiltonian and shown to be in good agreement with the measured RB data. The modeling results suggest that the Z error varies linearly with the pulse amplitude.