Plants (Jun 2023)

Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity

  • Betty Maribel Mamani-Huarcaya,
  • María Teresa Navarro-Gochicoa,
  • María Begoña Herrera-Rodríguez,
  • Juan José Camacho-Cristóbal,
  • Carlos Juan Ceacero,
  • Óscar Fernández Cutire,
  • Agustín González-Fontes,
  • Jesús Rexach

DOI
https://doi.org/10.3390/plants12122322
Journal volume & issue
Vol. 12, no. 12
p. 2322

Abstract

Read online

Boron (B) toxicity is an important stressor that negatively affects maize yield and the quality of the produce. The excessive B content in agricultural lands is a growing problem due to the increase in arid and semi-arid areas because of climate change. Recently, two Peruvian maize landraces, Sama and Pachía, were physiologically characterized based on their tolerance to B toxicity, the former being more tolerant to B excess than Pachía. However, many aspects regarding the molecular mechanisms of these two maize landraces against B toxicity are still unknown. In this study, a leaf proteomic analysis of Sama and Pachía was performed. Out of a total of 2793 proteins identified, only 303 proteins were differentially accumulated. Functional analysis indicated that many of these proteins are involved in transcription and translation processes, amino acid metabolism, photosynthesis, carbohydrate metabolism, protein degradation, and protein stabilization and folding. Compared to Sama, Pachía had a higher number of differentially expressed proteins related to protein degradation, and transcription and translation processes under B toxicity conditions, which might reflect the greater protein damage caused by B toxicity in Pachía. Our results suggest that the higher tolerance to B toxicity of Sama can be attributed to more stable photosynthesis, which can prevent damage caused by stromal over-reduction under this stress condition.

Keywords