AIP Advances (Mar 2014)
Enhancement in the multiferroic properties of BiFeO3 by charge compensated aliovalent substitution of Ba and Nb
Abstract
Polycrystalline ceramics, Bi1-2xBa2xFe1-xNbxO3 (x = 0.00–0.15), were synthesized by solid state reactions method. X-ray diffraction data have revealed elimination of impurity phases and an increase in unit cell volume with Ba and Nb substitution. Diffraction peak splitting is found to be suppressed which indicates a decrease in octahedral distortion. The Mössbauer spectra demonstrate the suppression of spiral spin modulation of the magnetic moments resulting in enhanced ferromagnetism with increasing dopant concentration. The leakage current density of the sample with x = 0.10 is found to be greatly reduced up to six orders of magnitude as compared to the undoped sample. Ohmic conduction is found to be dominant mechanism in all the samples, however, undoped sample showed space charge limited conduction in high electric filed region, while the sample with x = 0.15 exhibited grain boundary limited conduction in low electric field region.