Sensors & Transducers (Jan 2022)

Plasmonic Purcell Effect in Single Confined Metallic Layer

  • Cam Nhung VU ,
  • Julien LAVERDANT

Journal volume & issue
Vol. 255, no. 1
pp. 44 – 52

Abstract

Read online

In this paper, we present a theoretical and simulation work about the modification of the spontaneous emission of a radiating dipole into a plasmonic device. This problem concerns devices where a nanolight source is directly integrated in nanophotonic devices. The modification of radiation, also called Purcell effect, is calculated using electromagnetism theory of the dissipated power of a point source near or inside a multilayer system. After describing the general effect and the theoretical approach based on the calculation of the Local Density of Optical States (LDOS), we present how this dipole radiates near a metal mirror which supports Surface Plasmon Polariton (SPP) at the metal-dielectric interface. In a second step, we set our attention onto a symmetric system where the metallic layer is confined between 2 insulators. In that late case, the SPP at each interface hybridize to generate two new modes named Long-Range and Short-Range Plasmon. In particular, we analyze the coupling efficiency of the dipole into these new modes and discuss about some potential applications in nanophotonics. The last part of this paper deals with a more realistic device where the insulator layers display finite sizes which lead to the existence of waveguided mode in the structure.

Keywords