Mathematics (Dec 2024)
Dynamical Visualization and Qualitative Analysis of the (4+1)-Dimensional KdV-CBS Equation Using Lie Symmetry Analysis
Abstract
This study investigates novel optical solitons within the intriguing (4+1)-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation, which integrates features from both the Korteweg–de Vries and the Calogero–Bogoyavlenskii–Schiff equations. Firstly, all possible symmetry generators are found by applying Lie symmetry analysis. By using these generators, the given model is converted into an ordinary differential equation. An adaptive approach, the generalized exp(-S(χ)) expansion technique has been utilized to uncover closed-form solitary wave solutions. The findings reveal a range of soliton types, including exponential, rational, hyperbolic, and trigonometric functions, represented as bright, singular, rational, periodic, and new solitary waves. These results are illustrated numerically and accompanied by insightful physical interpretations, enriching the comprehension of the complex dynamics modeled by these equations. Our approach’s novelty lies in applying a new methodology to this problem, yielding a variety of novel optical soliton solutions. Additionally, we employ bifurcation and chaos techniques for a qualitative analysis of the model, extracting a planar system from the original equation and mapping all possible phase portraits. A thorough sensitivity analysis of the governing equation is also presented. These results highlight the effectiveness of our methodology in tackling nonlinear problems in both mathematics and engineering, surpassing previous research efforts.
Keywords