Nutrients (Mar 2017)

Intra Amniotic Administration of Raffinose and Stachyose Affects the Intestinal Brush Border Functionality and Alters Gut Microflora Populations

  • Sarina Pacifici,
  • Jaehong Song,
  • Cathy Zhang,
  • Qiaoye Wang,
  • Raymond P. Glahn,
  • Nikolai Kolba,
  • Elad Tako

DOI
https://doi.org/10.3390/nu9030304
Journal volume & issue
Vol. 9, no. 3
p. 304

Abstract

Read online

This study investigates the effectiveness of two types of prebiotics—stachyose and raffinose—which are present in staple food crops that are widely consumed in regions where dietary Fe deficiency is a health concern. The hypothesis is that these prebiotics will improve Fe status, intestinal functionality, and increase health-promoting bacterial populations in vivo (Gallus gallus). By using the intra-amniotic administration procedure, prebiotic treatment solutions were injected in ovo (day 17 of embryonic incubation) with varying concentrations of a 1.0 mL pure raffinose or stachyose in 18 MΩ H2O. Four treatment groups (50, 100 mg·mL−1 raffinose or stachyose) and two controls (18 MΩ H2O and non-injected) were utilized. At hatch the cecum, small intestine, liver, and blood were collected for assessment of the relative abundance of the gut microflora, relative expression of Fe-related genes and brush border membrane functional genes, hepatic ferritin levels, and hemoglobin levels, respectively. The prebiotic treatments increased the relative expression of brush border membrane functionality proteins (p < 0.05), decreased the relative expression of Fe-related proteins (p < 0.05), and increased villus surface area. Raffinose and stachyose increased the relative abundance of probiotics (p < 0.05), and decreased that of pathogenic bacteria. Raffinose and stachyose beneficially affected the gut microflora, Fe bioavailability, and brush border membrane functionality. Our investigations have led to a greater understanding of these prebiotics’ effects on intestinal health and mineral metabolism.

Keywords