Journal of Particle Science and Technology (Jun 2016)
Effect of ion concentration on viscosity, electrical conductivity and deposit weight of doped nano alumina prepared by electrophoretic deposition
Abstract
Viscosity, electrical conductivity and deposit weight were determined for Electrophoretic deposition (EPD) Mg2+-, Y3+-, La3+- and Ce4+-doped alumina's ethanolic suspensions prepared at dopant concentration between 350 to 1350 ppm. The concentration of XCly (X, y were: Mg, 2; Y, 3; Ce, 3 and La, 3, respectively) the charging salt, is also found to be a critical factor to control the viscosity. It is shown that the deposit weight is influenced by precursor concentration, but not by conductivity, viscosity or the pH of the suspension. All two way concentration interactions without Mg2+ and Ce4+ concentration simultaneous change are significantly in analysis of variance (ANOVA) model. The viscosity of suspension reached 2.5 mPa.s with Mg2+-, Y3+-, La3+- and Ce4+- decreased to 100, 100, 100 and 0 ppm in low iodine concentration (400 ppm), due to the most heavily cations that can adsorb to alumina surface with iodine adsorption but lighter Mg2+- cations adsorb under the influence of OH groups excite on alumina surface. The interest in the present study is to achieve a model between viscosity and additive concentration.
Keywords