Brain Sciences (Feb 2023)

OViTAD: Optimized Vision Transformer to Predict Various Stages of Alzheimer’s Disease Using Resting-State fMRI and Structural MRI Data

  • Saman Sarraf,
  • Arman Sarraf,
  • Danielle D. DeSouza,
  • John A. E. Anderson,
  • Milton Kabia,
  • The Alzheimer’s Disease Neuroimaging Initiative

DOI
https://doi.org/10.3390/brainsci13020260
Journal volume & issue
Vol. 13, no. 2
p. 260

Abstract

Read online

Advances in applied machine learning techniques for neuroimaging have encouraged scientists to implement models to diagnose brain disorders such as Alzheimer’s disease at early stages. Predicting the exact stage of Alzheimer’s disease is challenging; however, complex deep learning techniques can precisely manage this. While successful, these complex architectures are difficult to interrogate and computationally expensive. Therefore, using novel, simpler architectures with more efficient pattern extraction capabilities, such as transformers, is of interest to neuroscientists. This study introduced an optimized vision transformer architecture to predict the group membership by separating healthy adults, mild cognitive impairment, and Alzheimer’s brains within the same age group (>75 years) using resting-state functional (rs-fMRI) and structural magnetic resonance imaging (sMRI) data aggressively preprocessed by our pipeline. Our optimized architecture, known as OViTAD is currently the sole vision transformer-based end-to-end pipeline and outperformed the existing transformer models and most state-of-the-art solutions. Our model achieved F1-scores of 97%±0.0 and 99.55%±0.39 from the testing sets for the rs-fMRI and sMRI modalities in the triple-class prediction experiments. Furthermore, our model reached these performances using 30% fewer parameters than a vanilla transformer. Furthermore, the model was robust and repeatable, producing similar estimates across three runs with random data splits (we reported the averaged evaluation metrics). Finally, to challenge the model, we observed how it handled increasing noise levels by inserting varying numbers of healthy brains into the two dementia groups. Our findings suggest that optimized vision transformers are a promising and exciting new approach for neuroimaging applications, especially for Alzheimer’s disease prediction.

Keywords