International Journal of Endocrinology (Jan 2013)

Improved Glucose-Stimulated Insulin Secretion by Selective Intraislet Inhibition of Angiotensin II Type 1 Receptor Expression in Isolated Islets of db/db Mice

  • Zhen Zhang,
  • Chunyan Liu,
  • Zhenhua Gan,
  • Xinyi Wang,
  • Qiuyan Yi,
  • Yanqing Liu,
  • Yingzhijie Wang,
  • Bin Lu,
  • Hong Du,
  • Jiaqing Shao,
  • Jun Wang

DOI
https://doi.org/10.1155/2013/319586
Journal volume & issue
Vol. 2013

Abstract

Read online

Recent evidence supported the presence of a local renin-angiotensin system (RAS) in the pancreas, which is implicated in many physiological and pathophysiological processes. We utilized small interfering RNA (siRNA) to investigate the effects of angiotensin II type 1 receptor (AT1R) knockdown on glucose-stimulated insulin secretion (GSIS) in isolated islets of db/db mice and to explore the potential mechanisms involved. We found that Ad-siAT1R treatment resulted in a significant decrease both in AT1R mRNA level and in AT1R protein expression level. With downexpression of AT1R, notable increased insulin secretion and decreased glucagon secretion levels were found by perifusion. Simultaneously, significant increased protein levels of IRS-1 (by 85%), IRS-2 (by 95%), PI3K(85) (by 112.5%), and p-Akt2 (by 164%) were found by western blot. And upregulation of both GLUT-2 (by 190%) and GCK (by 121%) was achieved after AT1R inhibition by Ad-siAT1R. Intraislet AT1R expression level is a crucial physiological regulator of insulin sensitivity of β cell itself and thus affects glucose-induced insulin and glucagon release. Therefore, the characteristics of AT1R inhibitors could make it a potential novel therapeutics for prevention and treatment of type 2 diabetes.