Journal of Saudi Chemical Society (May 2024)
Electrochemical detection of hydroquinone as an environmental contaminant using Ga2O3 incorporated ZnO nanomaterial
Abstract
The primary objective of this research endeavor is to develop a highly sensitive and selective electrochemical sensor for the accurate detection of hydroquinone (HQ), a prevalent environmental contaminant. To achieve this, we employed a novel nanocomposite consisting of Ga2O3-doped ZnO (Ga2O3.ZnO) as the active nanomaterial for fabricating a glassy carbon electrode (GCE). The structure and morphology of the Ga2O3.ZnO nanocomposite were rigorously analyzed using a diverse range of techniques to ensure its suitability as the sensing nanomaterial. This innovative sensor exhibits remarkable capabilities, enabling the detection of HQ across a broad concentration range, spanning from 1 to 11070 µM, in a neutral phosphate buffer solution. It boasts an exceptionally high sensitivity of 1.0229 µA µM−1 cm−2 and an impressive detection limit of 0.063 µM. Thanks to its exceptional sensitivity and specificity, this sensor can precisely quantify HQ levels in real-world samples. Moreover, its outstanding reproducibility, repeatability, and stability establish it as a dependable and resilient choice for HQ determination.