Land (May 2022)
Do We Need More Urban Green Space to Alleviate PM<sub>2.5</sub> Pollution? A Case Study in Wuhan, China
Abstract
Urban green space can help to reduce PM2.5 concentration by absorption and deposition processes. However, few studies have focused on the historical influence of green space on PM2.5 at a fine grid scale. Taking the central city of Wuhan as an example, this study has analyzed the spatiotemporal trend and the relationship between green space and PM2.5 in the last two decades. The results have shown that: (1) PM2.5 concentration reached a maximum value (139 μg/m3) in 2010 and decreased thereafter. Moran’s I index values of PM2.5 were in a downward trend, which indicates a sparser distribution; (2) from 2000 to 2019, the total area of green space decreased by 25.83%. The reduction in larger patches, increment in land cover diversity, and less connectivity led to fragmented spatial patterns of green space; and (3) the regression results showed that large patches of green space significantly correlated with PM2.5 concentration. The land use/cover diversity negatively correlated with the PM2.5 concentration in the ordinary linear regression. In conclusion, preserving large native natural habitats can be a supplemental measure to enlarge the air purification function of the green space. For cities in the process of PM2.5 reduction, enhancing the landscape patterns of green space provides a win-win solution to handle air pollution and raise human well-being.
Keywords