International Journal for Computational Civil and Structural Engineering (Mar 2020)
INTEGRAL PARAMETERS OF CONCRETE DIAGRAMS FOR CALCULATIONS OF STRENGTH OF REINFORCED CONCRETE ELEMENTS USING THE DEFORMATION MODEL
Abstract
In accordance with the requirements of regulatory documents, restrictions are introduced on stress levels at the end of the falling branch of the diagrams at the maximum normalized strain values. We have developed mathematical models that establish a uniform sequence for calculating the unambiguous values of deformations at the base points of concrete diagrams, taking into account the accepted functional relationships and the rules for their use according to the tables of normative documents. It was shown that for equal values of deformations and stresses at base points, analytical expressions of diagram recommended by regulatory documents, even if it differs in structure, give identical outlines, diagram branches coincide. The correlation between the calculation models by Russian and foreign regulatory documents was established by comparing the values of the integral parameters of the diagrams and the ultimate forces obtained by calculating the reinforced concrete element according to the deformation model. As integral parameters of concrete deformation diagrams, it was recommended to use areas bounded by diagram branches and diagram completeness coefficients. Analytical modeling of integral parameters allowed us to exclude the procedure for numerically summing stresses along elementary strips in a section and solving nonlinear equations by the method of successive approximations when calculating the strength of an element.
Keywords