Caspian Journal of Environmental Sciences (Dec 2021)
A novel economical friendly treatment approach: Composite hydrogels
Abstract
There are many chemical indicators of drinking water pollution. These include heavy metals, radioactive materials, inorganic chemicals, organic chemicals, disinfectants, and disinfectant additives. Common methods for removing these contaminants from aqueous solutions include chemical precipitation, membrane processes, ion exchange processes, biological processes, adsorption, and chemical reactions. Each of these methods has limitations in application. Many studies have been performed on the use of graphene in filters. Graphite oxide (GO) platelets were prepared using a modified Hummers method. By employing GO platelets, GO/poly (acrylic acid – maleic acid) superabsorbent composites were synthesized by a free radical polymerization of acrylic acid and maleic acid as a monomer, using N, N -methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. The well-dispersed GO platelets in the polymer networks result in a significant improvement in absorbencies in distilled water solutions. The superabsorbent nanocomposite also exhibits a superior water-retention ability compared with the control under the same conditions. GO/P(AA-MA) composite was investigated using felid emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR); GO/P (AA-MA) composite is a highly effective absorbent of crystal violet (CV) and can be used to remove CV from aqueous solution. The kinetics of dye adsorption has been studied in terms of pseudo-first-order and pseudo-second-order rate expression. The results indicated that the adsorption process followed two models and demonstrated that intraparticle diffusion plays a significant role in the adsorption mechanism.
Keywords