Cailiao gongcheng (Aug 2023)

Preparation of C/Zr0.5Hf0.5C-SiC composite by PIP process and its microstructure and flexural properties

  • LIU Xingyu,
  • WAN Fan,
  • GAO Shitao,
  • WANG Yanfei,
  • LI Duan,
  • LI Junsheng,
  • LIU Rongjun

DOI
https://doi.org/10.11868/j.issn.1001-4381.2023.000151
Journal volume & issue
Vol. 51, no. 8
pp. 155 – 161

Abstract

Read online

Based on the self-made Zr0.5Hf0.5C precursor and commercial liquid polycarbosilane, C/Zr0.5Hf0.5C-SiC composite was successfully prepared by the precursor impregnation and pyrolysis(PIP) process. The influence of the thickness of pyrolytic C coating on the structure and bending properties of composite materials was studied. The results show that the self-made Zr0.5Hf0.5C precursor can be converted into Zr0.5Hf0.5C solid solution at a relatively low temperature of 1400 ℃. Because of its good permeability, the transformed Zr0.5Hf0.5C matrix exists in both the inter-bundle and intra-bundle regions of the C/Zr0.5Hf0.5C-SiC composite, which presents as a layered structure on SiC matrix. The phase composition of C/Zr0.5Hf0.5C-SiC composite mainly includes C, SiC and Zr0.5Hf0.5C. The densities of three groups of composites with different thicknesses of pyrolytic C coating (0.67, 0.84, 1.36 μm) are 2.07, 1.99, 1.98 g/cm3, respectively. SiC content in the composite decreases with the increase of the thickness of pyrolytic C coating. The three groups of composites with different thicknesses show pseudoplastic fracture mode during bending loading tests, bending strength, bending modulus and fracture toughness are above 410 MPa, 60 GPa and 15.6 MPa·m1/2, respectively. Good interface bonding and pre-introduced SiC matrix are the keys to obtaining excellent bending properties of C/Zr0.5Hf0.5C-SiC composites.

Keywords