Remote Sensing (Jul 2021)

Improving GNSS-R Sea Surface Altimetry Precision Based on the Novel Dual Circularly Polarized Phased Array Antenna Model

  • Zhen Cui,
  • Wei Zheng,
  • Fan Wu,
  • Xiaoping Li,
  • Cheng Zhu,
  • Zongqiang Liu,
  • Xiaofei Ma

DOI
https://doi.org/10.3390/rs13152974
Journal volume & issue
Vol. 13, no. 15
p. 2974

Abstract

Read online

Antenna is one of the key payloads of the GNSS-R system, and the gain is an important performance parameter. The signal-to-noise ratio (SNR) of the received signal can be improved by increasing the gain of the GNSS-R antenna, therefore the measurement accuracy is improved. However, the antenna gain and its beam width, these two performance parameters, are contradictory. If the gain of the antenna is increased, its beam width will inevitably become narrower. This narrowed beam width will affect the width of the survey strip for the GNSS-R system, which cannot meet the requirement of the high-precision and high-spatial resolution spaceborne GNSS-R sea surface altimetry in the future. In this paper, a novel dual circularly polarized phased array antenna (NDCPPA) is proposed and investigated. First, the GNSS-R satellites currently operating in orbit are all cGNSS-R systems, which use the traditional element antenna (TEA) method for measurement. The antenna used in this method is with low gain, which limits the improvement of sea surface measurement accuracy. In response to this problem, this paper establishes an NDCPPA model of iGNSS-R measurement system based on the theory of coherent signal processing on the sea surface. This model uses the high-gain scanning beam to increase the gain of the iGNSS-R antenna without affecting its coverage area, thereby improving the sea surface altimetry precision. Second, in order to verify the gain improvement effect brought by adopting the NDCPPA model, an NDCPPA model verification prototype for iGNSS-R sea surface altimetry was designed and fabricated, and then measured in a microwave anechoic chamber. The measurement results show that, compared with the TEA method, the antenna gain of our proposed verification prototype is enhanced by 9.5 dB. And the measured and designed value of the gain of the verification prototype matches well. Third, based on the GPS L1 signal, the NDCPPA model is used to analyze the effect of improving the precision of sea surface altimetry. Compared with the TEA method, the proposed model can increase the altimetric precision of the nadir point from 7.27 m to 0.21 m, which effectively improves the performance of the iGNSS-R altimetry. The NDCPPA model proposed in this article can provide the theoretical method basis and the crucial technical support for the future high-precision and high-spatial-resolution GNSS-R sea surface altimetry verification satellite.

Keywords