Pharmaceuticals (Jan 2023)
Recent Development of Radiofluorination of Boron Agents for Boron Neutron Capture Therapy of Tumor: Creation of <sup>18</sup>F-Labeled C-F and B-F Linkages
Abstract
Boron neutron capture therapy (BNCT) is a binary therapeutic technique employing a boron agent to be delivered to the tumor site followed by the irradiation of neutrons. Biofunctional molecules/nanoparticles labeled with F-18 can provide an initial pharmacokinetic profile of patients to guide the subsequent treatment planning procedure of BNCT. Borono phenylalanine (BPA), recognized by the l-type amino acid transporter, can cross the blood-brain barrier and be accumulated in gliomas. The radiofluoro BNCT agents are reviewed by considering (1) less cytotoxicity, (2) diagnosing and therapeutic purposes, (3) aqueous solubility and extraction route, as well as (4), the trifluoroborate effect. A trifluoroborate-containing amino acid such as fluoroboronotyrosine (FBY) represents an example with both functionalities of imaging and therapeutics. Comparing with the insignificant cytotoxicity of clinical BPA with IC50 > 500 μM, FBY also shows minute toxicity with IC50 > 500 μM. [18F]FBY is a potential diagnostic agent for its tumor to normal accumulation (T/N) ratio, which ranges from 2.3 to 24.5 from positron emission tomography, whereas the T/N ratio of FBPA is greater than 2.5. Additionally, in serving as a BNCT therapeutic agent, the boron concentration of FBY accumulated in gliomas remains uncertain. The solubility of 3-BPA is better than that of BPA, as evidenced by the cerebral dose of 3.4%ID/g vs. 2.2%ID/g, respectively. While the extraction route of d-BPA differs from that of BPA, an impressive T/N ratio of 6.9 vs. 1.5 is noted. [18F]FBPA, the most common clinical boron agent, facilitates the application of BPA in clinical BNCT. In addition to [18F]FBY, [18F] trifluoroborated nucleoside analog obtained through 1,3-dipolar cycloaddition shows marked tumoral uptake of 1.5%ID/g. Other examples using electrophilic and nucleophilic fluorination on the boron compounds are also reviewed, including diboronopinacolone phenylalanine and nonsteroidal anti-inflammatory agents.
Keywords