APL Materials (Mar 2019)

Electrodeposition of polymer electrolyte into carbon nanotube tissues for high performance flexible Li-ion microbatteries

  • Vinsensia Ade Sugiawati,
  • Florence Vacandio,
  • Yair Ein-Eli,
  • Thierry Djenizian

DOI
https://doi.org/10.1063/1.5082837
Journal volume & issue
Vol. 7, no. 3
pp. 031506 – 031506-10

Abstract

Read online

Polymer-coated Carbon Nanotube (CNT) tissues are very flexible and lightweight and have high potential as an anode material for flexible Li-ion microbatteries. The electrochemical deposition of p-sulfonated poly(allyl phenyl ether) (SPAPE) polymer electrolyte into CNT tissues has been accomplished using a cyclic voltammetry (CV) technique. When compared to a pristine CNT tissue, the capacity of SPAPE-coated CNT tissue after 10 cycles of CV is improved about 67% at 1C rate. The enhancement of electrochemical performance is obtained when the CNT tissues are coated with the SPAPE polymer electrolyte. The higher capacity of the SPAPE-coated CNT tissue is attributed to the increased surface area and the improved quality of the electrode/electrolyte interfaces between the nanotubes and the polymer electrolyte. The SPAPE-coated CNT tissue delivers a higher reversible capacity of 750 mAh g−1 (276 µAh cm−2) compared to a pristine CNT tissue, which solely provides a reversible capacity of 450 mAh g−1 (166 µAh cm−2) after 110 cycles at 1C rate. Remarkably, the SPAPE-coated CNT tissue reaches a high capacity up to 12C rate while observing that the capacity can be significantly recovered.