Sensors (Aug 2023)

A Feedback Control Sensing System of an Electrorheological Brake to Exert a Constant Pressing Force on an Object

  • Tomasz Spotowski,
  • Karol Osowski,
  • Ireneusz Musiałek,
  • Artur Olszak,
  • Andrzej Kęsy,
  • Zbigniew Kęsy,
  • SeungBok Choi

DOI
https://doi.org/10.3390/s23156996
Journal volume & issue
Vol. 23, no. 15
p. 6996

Abstract

Read online

The paper presents the application of a strain gauge sensor and a viscous brake filled with an electrorheological (ER) fluid, which is a smart material with controlled rheological properties, by an electric field to the fluid domain. For experimental tests, a cylindrical viscous brake was designed. The tests were carried out on a test stand especially prepared for this purpose and suitable for the examination of the impact of the rotational speed of the input shaft and the value of the electric voltage supplied to the viscous brake on pressing forces, taking into account the ER fluid temperature and brake fluid filling level. On the basis of the experimental research results, a viscous brake control system to exert constant pressing forces with feedback from a strain gauge sensor, based on the programmable logic controller, was designed and implemented. This system, using its own control algorithm, ensured a control pressing force within the assumed range, both during the constant and follow-up control. The measurement results obtained during the tests of the viscous brake designed to exert a force were presented in the form of time courses, showing the changes of the pressing force, the electric voltage applied to the brake and the rotational speed of the brake input shaft. The developed ER fluid brake control system with feedback was tested for constant and follow-up control, taking into account the impact of the working fluid temperature. During the test it was possible to obtain a maximum pressing force equal to 50 N for an electric voltage limited to 2.5 kV. The resultant error was lower than 1 N, wherein the adjustment time after changing the desired value of the force was around 1.5 s. The correct operation of both the brake and the control system, as well as the compatibility of the pressing force value and time adjustment, were determined. The main technical contribution described in this article is the design of a new type of DECPF and a new method for its control with the use of a specifically programmed programmable logic controller which simulates the proportional-integral controllers’ operation.

Keywords