PLoS ONE (Jan 2018)

Sialic acid-binding lectin from bullfrog eggs inhibits human malignant mesothelioma cell growth in vitro and in vivo.

  • Takeo Tatsuta,
  • Toshiyuki Satoh,
  • Shigeki Sugawara,
  • Akiyoshi Hara,
  • Masahiro Hosono

DOI
https://doi.org/10.1371/journal.pone.0190653
Journal volume & issue
Vol. 13, no. 1
p. e0190653

Abstract

Read online

Malignant mesothelioma is an aggressive cancer that results from exposure to asbestos. The therapeutic options for this type of cancer are limited; therefore, the development of novel therapeutic agents is urgently required. Sialic acid-binding lectin isolated from Rana catesbeiana oocytes (cSBL) is a novel therapeutic candidate for cancer, which exhibits antitumor activity mediated through RNA degradation. In the present study, we evaluated the effect of cSBL in vitro and in vivo. Xenograft-competent H2452 and MSTO human mesothelioma cell lines were treated with cSBL, and the pathway by which cSBL induces apoptosis was analyzed. In vivo studies were performed using nude mice inoculated with one of the two cell lines, and the effects of cSBL and pemetrexed were monitored simultaneously. Furthermore, the pharmacological interactions between the three agents (pemetrexed, cisplatin and cSBL) were statistically assessed. It was demonstrated that cSBL treatments caused morphological and biochemical apoptotic changes in both cell lines. Caspase cascade analysis revealed that an intrinsic pathway mediated cSBL-induced apoptosis. The administration of cSBL significantly inhibited tumor growth in two xenograft models, without any adverse effects. Furthermore, the combination index and dose reduction index values indicated that the cSBL + pemetrexed combination showed the highest synergism, and thus potential for reducing dosage of each drug, compared with the other combinations, including the existing pemetrexed + cisplatin regimen. cSBL exerted prominent antitumor effects on malignant mesothelioma cells in vitro and in vivo, and showed favorable effects when combined with pemetrexed. These results suggest that cSBL has potential as a novel drug for the treatment of malignant mesothelioma.