Компьютерная оптика (Feb 2020)
Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space
Abstract
An adaptive multidimensional signal interpolator is proposed, which selects an interpolating function at each signal point by means of the decision rule optimized in a multidimensional feature space using a decision tree. The search for the dividing boundary when splitting the decision tree vertices is carried out by a recurrence procedure that allows, in addition to the search for the boundary, selecting the best pair of interpolating functions from a predetermined set of functions of an arbitrary form. Results of computational experiments in nature multidimensional signals are presented, confirming the effectiveness of the adaptive interpolator.
Keywords