Enhancing wine authentication: leveraging 12,000+ international mineral wine profiles and artificial intelligence for accurate origin and variety prediction
Leticia Sarlo,
Coraline Duroux,
Yohann Clément,
Pierre Lanteri,
Fabien Rossetti,
Olivier David,
Augustin Tillement,
Philippe Gillet,
Agnès Hagège,
Laurent David,
Michel Dumoulin,
Richard Marchal,
Théodore Tillement,
François Lux,
Olivier Tillement
Affiliations
Leticia Sarlo
Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon 1 CNRS, Université de Lyon, Villeurbanne Cedex 69100, France - M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France
Coraline Duroux
M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France
Yohann Clément
Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, CNRS, Villeurbanne Cedex 69100, France
Pierre Lanteri
Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, CNRS, Villeurbanne Cedex 69100, France
Fabien Rossetti
Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon 1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
Olivier David
Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
Augustin Tillement
M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France - Universite Claude Bernard Lyon 1, Institut National des Sciences Appliquées, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, 15 bd Latarjet, 69622 Villeurbanne, France
Philippe Gillet
M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France
Agnès Hagège
Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, -CNRS, Villeurbanne Cedex 69100, France
Laurent David
Universite Claude Bernard Lyon 1, Institut National des Sciences Appliquées, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, 15 bd Latarjet, 69622 Villeurbanne, France
Michel Dumoulin
Agro Œno Conseil, Mâcon, France
Richard Marchal
Université de Reims Champagne-Ardenne, Laboratoire d’Oenologie, BP-1039, 51687 Reims Cedex 02, France - Université de Haute-Alsace, LVBE, 68008 Colmar Cedex, France
Théodore Tillement
M&Wine, 305 rue des Fours, 69270 Fontaines Saint Martin, France
François Lux
Institut Lumière-Matière, UMR 5306, Université Claude-Bernard-Lyon-1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France - Institut universitaire de France (IUF), Paris, France
Olivier Tillement
Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon 1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
For the wine industry, ensuring quality and authenticity hinges on the precise determination of wine origin. In our study, we developed a fast semi-quantitative method to analyse 41 chemical elements in wine, employing inductively coupled plasma mass spectrometry (ICP-MS). This methodology characterises what we term the mineral wine profile (MWP). In contrast to an organic molecular profile, the mineral composition of a wine remains constant from the moment it is bottled. Mineral elements play a crucial role in the terroir of wine: they pass primarily from soil to grape and are then influenced by various vinification techniques. Indeed, it is widely recognised that the original soil characteristics are altered by a multitude of winemaking procedures, presenting a considerable challenge when endeavouring to extract origin-related information in a typical scenario. Our study demonstrates that statistical analyses and artificial intelligence (AI) could be a tool for accurately deciphering origin information within the MWP, provided sufficient mineral elements are measured and a comprehensive database of wine samples is employed to establish effective learning. In this study, a dataset comprising 12,966 MWPs was created in just over a year. The first analysis revealed correlations between the elements in wine, especially between rare earth elements, between macronutrients and between micronutrients. A machine learning method was then developed to assess wine origin and principal grape variety. Six models were tested by comparing the area under the receiver operating characteristic curve (AUC), with eXtreme Gradient Boosting as the chosen model. Mean accuracies of 92 % for country classification, 91 % for the French wine region, and 85 % for the main grape variety were obtained, and mean AUC scores of 0.964 for country classification, 0.961 for the French wine region and 0.914 for the main grape variety. This study represents the first comprehensive investigation at this scale on wine samples, and underscores the importance of using a comprehensive MWP dataset for AI applications when verifying wine origin. The authentication of a wine with over 99 % specificity could be routinely achievable through this approach.